知识点总结与练习题
核心概念 (Core Concept):对于任意正数 \(a, b, x\)(\(a \neq 1, b \neq 1\)),有:
\(\log_a x = \frac{\log_b x}{\log_b a}\)
推导过程 (Derivation):设 \(\log_a x = m\),则 \(a^m = x\),两边取以 \(b\) 为底的对数。
倒数关系 (Reciprocal Relationship):
\(\log_a b = \frac{1}{\log_b a}\)
常用方法 (Common Methods):
题目:求 \(\log_8 11\) 的值,精确到3位有效数字。
解题步骤说明:
题目:解方程 \(\log_5 x + 6\log_x 5 = 5\)
解题步骤说明:
求以下对数的值,精确到3位小数:
a) \(\log_7 120\)
b) \(\log_3 45\)
c) \(\log_2 19\)
d) \(\log_{11} 3\)
答题区域:
解以下方程,答案精确到3位有效数字:
a) \(8^x = 14\)
b) \(9^x = 99\)
c) \(12^x = 6\)
答题区域:
解以下方程,答案精确到3位有效数字:
a) \(\log_2 x = 8 + 9\log_x 2\)
b) \(\log_4 x + 2\log_x 4 + 3 = 0\)
c) \(\log_2 x + \log_4 x = 2\)
答题区域:
已知 \(\log_2 3 = a\),用 \(a\) 表示以下对数:
a) \(\log_3 2\)
b) \(\log_3 8\)
c) \(\log_9 4\)
答题区域:
证明以下等式:
a) \(\log_a b = \frac{1}{\log_b a}\)
b) \(\log_a b \cdot \log_b c = \log_a c\)
答题区域:
解方程 \(\log_3 x + \log_x 3 = 2\)
提示:设 \(\log_3 x = t\),然后使用换底公式。
答题区域:
已知 \(\log_2 5 = p\) 和 \(\log_2 3 = q\),用 \(p\) 和 \(q\) 表示:
a) \(\log_5 3\)
b) \(\log_{15} 10\)
c) \(\log_6 25\)
答题区域:
解方程 \(\log_2 x + \log_3 x + \log_4 x = 6\)
提示:将所有对数转换为相同底数。
答题区域:
a) \(\log_7 120 = \frac{\log_{10} 120}{\log_{10} 7} = \frac{2.079}{0.845} \approx 2.460\)
b) \(\log_3 45 = \frac{\log_{10} 45}{\log_{10} 3} = \frac{1.653}{0.477} \approx 3.465\)
c) \(\log_2 19 = \frac{\log_{10} 19}{\log_{10} 2} = \frac{1.279}{0.301} \approx 4.248\)
d) \(\log_{11} 3 = \frac{\log_{10} 3}{\log_{10} 11} = \frac{0.477}{1.041} \approx 0.458\)
a) \(8^x = 14\),所以 \(x = \log_8 14 = \frac{\log_{10} 14}{\log_{10} 8} = \frac{1.146}{0.903} \approx 1.27\)
b) \(9^x = 99\),所以 \(x = \log_9 99 = \frac{\log_{10} 99}{\log_{10} 9} = \frac{1.996}{0.954} \approx 2.09\)
c) \(12^x = 6\),所以 \(x = \log_{12} 6 = \frac{\log_{10} 6}{\log_{10} 12} = \frac{0.778}{1.079} \approx 0.721\)
a) 设 \(\log_2 x = t\),则 \(\log_x 2 = \frac{1}{t}\)
原方程:\(t = 8 + 9 \cdot \frac{1}{t}\)
整理得:\(t^2 - 8t - 9 = 0\)
解得:\(t = 9\) 或 \(t = -1\)(舍去)
所以 \(x = 2^9 = 512\)
b) 设 \(\log_4 x = t\),则 \(\log_x 4 = \frac{1}{t}\)
原方程:\(t + 2 \cdot \frac{1}{t} + 3 = 0\)
整理得:\(t^2 + 3t + 2 = 0\)
解得:\(t = -1\) 或 \(t = -2\)
所以 \(x = 4^{-1} = \frac{1}{4}\) 或 \(x = 4^{-2} = \frac{1}{16}\)
c) \(\log_2 x + \log_4 x = \log_2 x + \frac{\log_2 x}{\log_2 4} = \log_2 x + \frac{\log_2 x}{2} = \frac{3}{2}\log_2 x = 2\)
所以 \(\log_2 x = \frac{4}{3}\),\(x = 2^{\frac{4}{3}} = \sqrt[3]{16}\)
a) \(\log_3 2 = \frac{\log_2 2}{\log_2 3} = \frac{1}{a}\)
b) \(\log_3 8 = \frac{\log_2 8}{\log_2 3} = \frac{\log_2 2^3}{\log_2 3} = \frac{3}{a}\)
c) \(\log_9 4 = \frac{\log_2 4}{\log_2 9} = \frac{\log_2 2^2}{\log_2 3^2} = \frac{2}{2\log_2 3} = \frac{1}{a}\)
a) 证明:\(\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}\)
b) 证明:\(\log_a b \cdot \log_b c = \frac{\log_b b}{\log_b a} \cdot \log_b c = \frac{\log_b c}{\log_b a} = \log_a c\)
设 \(\log_3 x = t\),则 \(\log_x 3 = \frac{1}{t}\)
原方程:\(t + \frac{1}{t} = 2\)
整理得:\(t^2 - 2t + 1 = 0\)
解得:\(t = 1\)
所以 \(\log_3 x = 1\),即 \(x = 3\)
a) \(\log_5 3 = \frac{\log_2 3}{\log_2 5} = \frac{q}{p}\)
b) \(\log_{15} 10 = \frac{\log_2 10}{\log_2 15} = \frac{\log_2 2 + \log_2 5}{\log_2 3 + \log_2 5} = \frac{1 + p}{q + p}\)
c) \(\log_6 25 = \frac{\log_2 25}{\log_2 6} = \frac{\log_2 5^2}{\log_2 2 + \log_2 3} = \frac{2p}{1 + q}\)
将所有对数转换为以2为底:
\(\log_2 x + \frac{\log_2 x}{\log_2 3} + \frac{\log_2 x}{\log_2 4} = 6\)
\(\log_2 x + \frac{\log_2 x}{\log_2 3} + \frac{\log_2 x}{2} = 6\)
设 \(\log_2 x = t\),\(\log_2 3 = q\):
\(t + \frac{t}{q} + \frac{t}{2} = 6\)
\(t(1 + \frac{1}{q} + \frac{1}{2}) = 6\)
\(t(\frac{3}{2} + \frac{1}{q}) = 6\)
\(t = \frac{6}{\frac{3}{2} + \frac{1}{q}} = \frac{12q}{3q + 2}\)
所以 \(x = 2^{\frac{12q}{3q + 2}}\)